नयी दिल्ली (स्वस्थ भारत मीडिया)। भारतीय शोधकर्ताओं ने एक नया एल्गोरिदम विकसित किया है, जो मस्तिष्क के विभिन्न क्षेत्रों के बीच कनेक्टिविटी को बेहतर ढंग से समझने और पूर्वानुमान लगाने में वैज्ञानिकों की मदद कर सकता है। ग्राफिक्स प्रोसेसिंग यूनिट (GPU) आधारित यह मशीन लर्निंग एल्गोरिदम बेंगलूरू स्थित भारतीय विज्ञान संस्थान (IISC) के शोधकर्ताओं द्वारा विकसित किया गया है।
मस्तिष्क की कनेक्टिविटी बताने के लिए नया एल्गोरिदम
रेगुलराइज्ड, एक्सेलेरेटेड, लीनियर फासिकल इवैल्यूएशन (ReAl-LiFE) नामक यह एल्गोरिदम मानव मस्तिष्क के डिफ्यूजन मैग्नेटिक रेजोनेंस इमेजिंग (DMRI) स्कैन से भारी मात्रा में उत्पन्न डेटा का तेजी से विश्लेषण कर सकता है। शोधकर्ताओं का कहना है कि रियल-लाइफ के उपयोग से मौजूदा अत्याधुनिक एल्गोरिदम की तुलना में 150 गुना तेजी से DMRI डेटा का मूल्यांकन किया जा सकता है। सेंटर फॉर न्यूरोसाइंस (CNS), IISC के एसोसिएट प्रोफेसर और नेचर कम्प्यूटेशनल साइंस जर्नल में प्रकाशित इस अध्ययन से जुड़े शोधकर्ता देवराजन श्रीधरन कहते हैंः-जिन कार्यों में पहले घंटों से लेकर दिनों तक का समय लगता था, उन्हें अब कुछ सेकेंड से मिनटों की अवधि में पूरा किया जा सकता है।
कैसे काम होगा नयी विधि में?
मस्तिष्क में हर सेकंड लाखों न्यूरॉन फायर होते हैं और विद्युत तरंग उत्पन्न करते हैं, जो मस्तिष्क में एक बिंदु से दूसरे तक कनेक्टिंग केबल या तंत्रिका फाइबर (Axons) के माध्यम से न्यूरोनल नेटवर्क में यात्रा करते हैं। मस्तिष्क द्वारा किए जाने वाली संगणनाओं के लिए ये कनेक्शन आवश्यक हैं। IISC में पीएचडी शोधार्थी और अध्ययन की प्रमुख शोधकर्ता वर्षा श्रीनिवासन कहती हैं-मस्तिष्क व्यवहार संबंधों को बड़े पैमाने पर उजागर करने के लिए मस्तिष्क की कनेक्टिविटी को समझना महत्वपूर्ण है। हालांकि, मस्तिष्क कनेक्टिविटी का अध्ययन करने के लिए पारंपरिक दृष्टिकोण के तहत आमतौर पर पशु मॉडल का उपयोग होता है, जिनमें चीरफाड़ की आवश्यकता होती है। दूसरी ओर, मनुष्यों में मस्तिष्क की कनेक्टिविटी का अध्ययन करने के लिए एक चीरफाड़ रहित विधि है।
इंडिया साइंस वायर से साभार